Can We Derive Scaling Law From First Principles?
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1 515

ZYHTCRI TSRO SR I A5 AR 2 SE A B N R R AU 2 PR A
B N BRI D SO AR (N4 token-steps B ZE T FLOPs) I, 414 AN L& &
FRBCE MBI QI RFAE A TR A N SR BCI SR 2% [ R AR Ay X R AR PR AR
PG TR R Rt K, RERR S EORZEE R a st 15 1,
DAL AR AN [ G5 AR AR U S AT AR RG22 57

Remark 1.1. BFFEAMA A 55 —PEIEIR M A4S scaling law A B ifrE— D RERY I, 5T
i RARFSE /S A WAR IS S e d i &, T8 I A B A S AN - A E S R A i
I . g2 NTK, KRR XML feature learning 455 B IR R IHESE
X UEER 2 AR fine-grained A T H , AHE M2/ MR R TEARF]— AN KRR scaling law, ¥
JER AR . SERUEIRAT DR BE T BT R 1Y) implicit bias F1 feature learning WA 5T
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R R AR S T LG | AR R, A SOR MRS i 5 40 11 40 R TR S5 4 B
JC (BEx), FFEHEMRAE 2 i w2938 7 5 B R ZE R AR o LA R A E T B R e e
P2 TR RRIE S, R RS AR SR 2O W B — AR SR K A e 25 (AR £y ), 9F
HEAAEW KRS, WEA h R ENENEIT S . A G245 —Fa i E s
TR, SR /S scaling K HASE S EARG T SEZ MM~ 2.

AR BEAR IR VU RAE RAHIAL scaling, AL scaling, JIZkmfE (2 FLOPs)
scaling, DAM optimal compute point (B} compute-optimal Fi{T) %fM.[1 loss—compute 5, A{H
TELE N B, O BA T I HEdE: Jegs B RS Zipf ik B tiesh 14
FB SRR SRR I 20 I 2 = 28 BAAF B scaling; a2y IMBRA IR R A & S w2k
L2 T compute-optimal fi#.

2 Pigh: BEX%EM Y Zipf ik

A 5 SRS ) S0 R, IS SCRE I e R S Ve . 45 F AR 2 3R T 2y
Bk AL MESH (BEHSHHEED, HILRSCEZREESEN5 £ FTHIGE, HE T e
B R ROE

2.1 B, dSEHER S5 el 280 5 iR

BERSEsl BOEF R E— T BT, DR {12, o B RIS SOARRR
SE N token H{ n-gram, tHE] AZIERMET . LB . KARKRERSATT I AL . nIGE T HA 454 .
ASCHRM AN R JE e BB v, HAENG 2 BTl e A

REMAE 4 pp B b REZEARGE (] ERAR I B . OO R i 1 B TR P 175
SRR ) o RR— et R RS
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WABRIE MR R EARINARUR L A iR B 52y AL =L — E, {8
B, Rl )

k=1
Hrp g € [0,1] FoRBial b BRI g = 0 R BTG O AL BTTHRAT PAZ
W), qn =1 FoRGHEIEARYIE .
X (2) AL ZEWE AL FAo M AT RIGFBORA: BHRFEIAE pe SIIZRIRE gr.
ARICHTA scaling law 34 F RFZRAMTEA R G PRLTHT AT AT

2.2 Zipf SEilEx

fRi& 2.1 (Zipfian Distribution). B R EEM & IETHES, HMZFETE pr IR Zipf 43
1

1
pe=Zk% a>1, (3)

Hif Z = ((a) ME—LEEL

Remark 2.1. BV #—H 4 RIEMAZEZEE, B pe = kb *L(k), Hi L() HEEEL
X AR EUE IE AR, (R R U N RS Scaling Law BFAFEEL, HILIESC
WS EERETIREER (3),

FTF SR Teacher R 2 1E WA 22 B4R E LM S T, JTLIER R EFIN
—4& lemma (Potter bound 45) SHEAENX, A, R trivial, FAERERAELTIAT
WA RAERRWARTE koL(k). BEHARRIE, WaIEAR .

e Zipf B~ , ARSI T AR MO S SHE I, WL, o BRI 1, R
B, AR R ITACEMOR, SREULM AR E N R0 TR EZE . H XA tE%E
PR R SEERENCORTEE St 1

3 DALl Ty A A SR

ARG — R/ MER B A, BN ) (BERTHHR) S5RETFA {0} KRRk
FARRIR R — DR g1 (7) B, EERCE (2) JERTRAXE AL() Meftiit

Remark 3.1. FARAQURTERA K21 A X 25 8] i 2 B i AR X2 ) B9 P X - im-
plicit bias, ZERHEIY remark BEF], £ NN+GD i@ F, REBEARS HBEIX A implicit
bias, BUEFEHIR MR ENSE, #ZXF blas FFRIEN,

3.1 AT ds R 1R

FEAMRGEIT , G EAE R e R PR 8e2s . AT — A ek ke Xt rs
BB/ ARSI T 0, BREBRIIBIRZEIRIT T 1o AR AR N R T 4 S Bk =5 )



RGBS, JREEE SR RS RS (k> k) MR, (— N FE R (el 7 —DRAE
FRA AL )

fRi% 3.1 (Ordered Learning & Effective Frontier). SR EE WK FHEY] . HEEERAEHAER
MR (S8 N, Bl D 80t5HE 1) AT, RETFH {getes WRE:
LW 0<q<g<---<L

2. ATRONBS : AFAENG FARWTRL ke (BT RURLH), (1524 k < Ky B g RN, T2 k> k.
B qe #2381

BRI E k. AMTRESEIRAE AL, 10 EERAFAE — A ] T i@ R Tk v 73 B X [a) o Jm SCHE
B K S IR RS =T T e i ke AR, ITTHE AL AT Zipt
RS GRS R )

3.2 YImtR P2 gl ¢

FATHENZRIN T 48 EFIA = AMEsE: B PAHALEE pe GO 5 A3 YR A A 5 2 0 A T 3T
SRR s W 4iam S ARV ROBURR , I i SR -

i 3.2 (RESCBOBERLRAE (i..d.)). WZLRTUN A S M RRALI : 7e—2 (g
token-step) ¢, WIMFIAKIN K, € N szl opah, H
Pr[K; = k] = ps.

AR L = L{K, =k}, W E[L4] = pro

Rix 3.3 (BEPLMELE / FRiEWEE). WK b, FAEREMRE ¢ (t) € [0,1] i
RMEREL . H5 ¢ PR & i, ARk KA — UG RaRIR 4

ar(t+1) = (1 — nAg) qr(?) #le=1,
A S B2 A ) R A
ar(t+1) = qr(t) #l =0,

HAopK n >0, A, > 0 ARSI A A R 2.

fRix 3.4 (R AHOERNUERL). AUMBERE A RVFRIEIRAE L. G2 AT TR
FIAER, RARESHA:

A = Xoph Xo >0, B>0.

N2 R R RN G ] 4 SR A R S BB ML SR A I R SO R RO R,
FEOIEL LRI (RECEHS log(1 — ) JEBIT)-
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51 3.1 (SREARIAIEHULE). 7E B 3.2 to 3.4 K, LINFPEL (B token-step) 2 7, Ff
B qn(0) = 1. H e RUE/NH 7 RERN, FH

qr(1) =~ exp(—CTpf), c:=1nl\o. (4)
G il TETEZE R PR T 1 2
d

%%(7’) = —cpj, ar(7), qx(0) = 1.

EML [EE ko B 3.3, FE T BB E] (R

ni(r) 1= Tift,k.
=
B I =1, BREFLL (1—nA)s M L =0, BRZEAE, Fitt
g (1) = (1= 1Ae)"* D gp(0) = (1 = np)™ ).
i B3 3.2, {Tx}hiso # iid. Bernoulli(py), &

D) e LT,

T

MIIAER 7 R n(7) ~ 7oy 0L (FEMER R B B SR R AT )
HORBFEHGE L. X 0 <2 <1, log(l —z) = —2 + O0(2®). 24 nhp BH/],

(1 —nAp)™ (M = exp(nk(T) log(1 — 77>\k)) ~ exp( — DAk ’I’Lk(T))

HH ni(r) = ) 1%
qi(T) ~ exp( — DAk Tpk).

WG B 3.4, A= Aoppp ',
qr(T) =~ exp( —nAo Tpf) = exp( — CTpg),

B (4). O

Remark 3.2 (4] 8 K& X). 513 3.1 A2 HRMTEMR: cpf FRHEE (1) B0
MENBR o< pr, () ARV A EIRIE oc Ay ocpl o BIL B BEZIE T ks Fex
PURBURIE: B =12 “DUhUIBERIE” B B > 1 R ke g 2 i
PAGTERAARHCERT, AT Sk AR 5 I 5 ) B U i o B BB D i

Hi (4) AT 40 7, 24 erpl > 1B gu(7) A/, 24 erpl < 1B qi(7) ~ 1. AT DA A
B ko (r) SESCHWEE erp) = 1 MR, AR R TTH. X BRELE Section 6 HBat Ak AR
AT



4 5—Fh Scaling Law: BEIHIBLEL Scaling

AR LS5 U i ) 2 AGEAR RS B s SR Z R ERMTE T, S AL FEZH0R
BN R, XA N BT A B (SUm A RE) k()
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4.8
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4.1 FHEATRT SRR

{&Ri% 4.1 (Capacity map). fFFE VRSB EE M : N — N FERE BRI L

k. (N) = M(N).

(Bise 4.1 WVE I RAERAERE ) S 85 ] A et — D B s B M(N). TEFZSHALT,
M(N) algt—2 R EFRR:
M(N) x N7, v > 0. (5)

DI M(N) TS, FHE (5) MRERARE
NHEBEIEA SRR REY, ALN) RBORHET Zipf SRR .

&l 4.1 (REWRSESNEMRIE). 7 i 3.1 5 ik 417, 74 k(V) < M(N) 5%
MHMERREE € € (0,1),

lim su N) =0, lim inf N)=1.
N—o0 kg(l,e)r,)c*(m %) N—roo k2(1+e)k.(N) a(N)
PNIEEAE PR Y ST
Z pr S ALN) S Z P (6)
k>(14¢e)ks(N) k>(1—e)k«(N)

E>ky (N) E>M(N)




e B (2),
AL(N) =~ Zpqu(N)-

k>1
FIH pr > 05 qp FEIAM:, 7350035 BT X B < (1—e)k(NV), HIRIEA ¢ (N) — 0,
PR3 R 43 DT R AT AT B/ N R . X k> (L + 9)k(N), B qu(N) — 1, HIEFTTES
D ks (1oyk, Pr [ABT o FEMIIEFHATE] (6). Fo M ko(N) =< M(N) BRI, O

4.2 Zipf JEAHTL SO scaling 7%

I 4.1 (RIS Scaling). 76 4% 21 F (o= 1k2, a>1), &

1 1
= k=% ~ M-D M : 7
Z b =7 Z Z(a—1) ’ = (7)
k>M k>M
e fmd 4.1 1%
AL(N) o« M(N)=(e=1 | (8)
e (5), W
AL(N) oc N~D | (9)

JERA. A SCIEEEUR M SR a8, FAA SIS .
Xfa>1, EEL o — o R, RS HIE,

/ z %dx < Zk:_o‘ < / Tz~ %dz.
M1

k>M M

N

=]
T

d\

\

ExA

—

/ x Ydr = M~ / r Ydr = (M +1)~(=b,
M o — 1 M+1 o — 1

WA M — 00 3 Yoo p b ~ M-, A 1/Z B (7).
A A1, AL(N) < 350 ar P ARA (7) 5 (8)0 5 M(N) oc N7, AR E] (9). O

i (9) I, BEAY scaling $8ECH an = v(a —1). BEIRDGEE (o BE) B, an SHRE
SRy AR MZMEE (v BE) 1, oy BB o g, H o — 17 BHEEGEL 0, Xt

5 45 i Scaling Law: E#ifiEL Scaling

AATHER A R SN GRI A RS R HIEE T, DR Rt w2 S8 T iR 2 BE N 2R 5L
PR D BRI SR S S GE T B SRR 5, FRATTHEAR R AT 2R 22— AR AR E X
NNGAEAR) missing mass (IR, FFUEIHEAE Zipf KR T E R,
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BNZREH D A token ALA, HAN MBS AT ML 4RI &, 4 X ~ Binomial(D, py)
PR HAEN GRS h i BIREL. e SR

qr(D) = Pr[X; = 0] = (1 — pp)”. (10)
T (2) Bt A, ATTEEEE S A R B ] AR AU E SO
AL(D) := E[Zpk X, = 0}} = > e Pr(Xp =0 = > pe(1—p)”. (11)

E>1 E>1 E>1
(H: XHM AL(D) & “coverage-limited regime” PG THCHE: H 5 B S 2% 10 7™ 5 R UK
THEMPNZA G MR, AR K.)
HAE (1 —po)” SHEEABRER, T RAN—BE.
B3 5.1 (RN ERIIEHKE). WERE pe(0,1) 5B D>1, F
(1-p)P < e PP, (12)
FH2Y p e [0,1/2] WA TH

e PPt < (1-p)P < e PP, (13)

iEH. i log(l—p) < —p f+ (1 —p)” =exp(Dlog(l —p)) < e PP, B (12). 24 p € [0,1/2] B}, B
B h(p) = log(1 —p) +p+p? WL h(0) =0 H W (p) = -7 +1+2p = 24222 > 0, # h(p) >0,
B log(1 —p) > —p —p*. FREALIFTLA D 14 (13). 0

BERORULH: ZEREHIET, (11) WEHTTH
S(D) = > pre P (14)

k>1

ZlE s BEZ, (- p)? BR e PP RN
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@RE 5.1 (A (1—pi)” Bl e~ PP BIEMEMN). B {prdror BIFEARE 3,0, p = 1. & AL(D)
5 S(D) 35l (11) 5 (14) . WIER D > 4, 7S D TLRIIFEL c1,c0 > 0 15

L\ S(D) < AL(D) < ¢ 8(D). (15)

Fepilh, AL(D) = S(D).

iRl 9B 5.1 iy ER (12) 243 AL(D) < S(D), BOTH e = 1.
MIETR, B 6 := D72 <1/2 (4 D>4), 4

K(D):=max{k>1: p, >0}, HEHGRIENEK(D)=0.
FA AT, R (11) 2R KRS R
Z pk: (1=p)” + > pe(l—p)” = H(D)+T(D).

k>K(D)
MR k> K(D), B pe <0<1/2, TRH (13) 1%

(]. _pk)D > efD(PIrHJi) — ¢~ D eiDpi_
NH pr < DY2, i Dp2 <1, MIfii e PPk > et A
T(D)= Y p(l-p)? > e > pre P

k>K (D) k>K (D)
H—Jr, kil H(D) Ef. T2

AL(D) > T(D) > e Y pre P,
k>K(D)

RBJFEREINELIE & < K(D), f pp > D77, )

Z pre PP < Z me‘Dl/2 < e DV,

k<K (D) k<K(D)
5
S( Z pre Dpk‘l‘ Z e —Dpy, <€_D1/2+ Z pre —Dpy, < _D /2 Z pke Dpk.

k<K(D) k>K(D) k>K(D) k>K(D

FIF MG .

AL(D) > e '(1+e 2" 18(D) > 50 5(D),

e

Hhd a4 D> 4 e < e <10 BT e = 1/(2¢), SERUEDI. 0

5.2 Bl scaling Mfighrift's (Zipf #)E)

I 5.1 (BUEMAR Scaling). & pr = %k o Hpfa>1, Z=((a). & AL(D) i (11) E X,
N4 D — oo B

AL(D) =< D@ /e | (16)
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HORGHAML, AT

11\ e 1
N ~(a=1)/a _ (= =
AL(D) ~ coD-@ D/ ¢ a(Z) F(l a).
HERA. i 5.1, R S(D) = Y5, pre” PPx (MR, FRFLEIRTE AL(D).
KA pr =% o, 15
S(D) = Zk exp(—k )
A RESH D
a :<Z) s o9y =y e, y>0
W
1 ky—@ LA
O A R Q]
N}
1 1 [k
B P S I ld
S(D) = @ akz_:lg(a). (17)
=:R(a)

?ﬁﬁﬁﬁf?a)%fo y)dy. B g>0, HYy — oo B g(y) ~y @ W (a>1); Ky |0
i gly) =y e v " ﬁ&.éﬁzﬁmﬁﬁ,\, M g€ LY(0,00), FHMEE M >0,

% % 9(%) — 9(y) dy

a—» o0 0

RARER R RIS XA, T g€ L'(0,00) 15
sup L Z g(ﬁ) < /M 9y)dy ——— 0,

a a
azl s laM|

AT AT K2 A R 452

oo k o)

R(a):éZg<a) — ; g(y) dy

a—00
k=1

PHZERYY: Mt u =y, Wy =u ", dy=—(1/a)u” /> du, NI

o o —a 1 [ 1 1
/ 9(y) dy = / y e dy= / e Y dy = —F(l — 7>.
0 0 @ Jo « «

Al (17), M a1 = (D/Z)_(Ot—l)/a’ il

1 (Dy~le=l/e 1] 1y 1/1\Va 1\ H-(a-1)/a
S0) ~ 7(z) Si-g) =4(z) )
SR @51 MRS ALD) = S(D), WIAIEE] (16); 3 HilT LR T S(D) MM
H, % Zipt WU F AR RS EO0R AL(D) ~ ¢ -V .

Remark 5.1 (iHRASERIES). HEIEAFTEEDLHI mo 2 1 K, AR
qr(D) := Pr[ X} < my], X}, ~ Binomial(D, py),

FERRE L ALy (D) = > 45 P qe(D) o TERKEBEFXIE pp < 1K, ATAAMRITML (BE R
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M I AR ER ) #5E

Pr[X n 3 Do (PP
I'[ < mo] JZ_; @ ]'
%R e PP FeDd Dp, W2, FBLETER AL Dp, < 1 BIFKIXE]. 7E Zipf 1% 7B
N Dpy, <118 k., < (D/2)Y~, 35S ALpy, (D) < D™D/ FERORAS | {UHEBUK
*ﬁ? moo

i EHE 5.1, B scaling $880Ch ap = (o — 1)/a. FE% missing-mass PR, o — 17 A}
ap — 0, X1 R R E I O I Eict i R ) N AR5 2218

Remark 5.2 (FREYHIAE vs. HIBEMEE: W scaling law EFHFHI 5 ZESR). Section 4 5 Sec-
tion 5 HEHZE scaling law KM FIBAANE : BAGIBE I 30 I T X Zipf B 1) # =
F Y ko, vy P> TTEHRAERETE AR XT 2R kb > 1 8RN 30,5, pe(1 — pi)® (BOHRIEEGE L
> ks1 Pee” PP ) (B A BAL L R : A TR TR AR N FF A REEAE K, T
HiREGAREZRFOBMERE LT

BORIMLEE scaling: VBT (L) BEEWT (ERIZOMBISZIRNT, (2% 3.1 and 4.1 #i5RH
ZIm T BERCA I GRS FFEIR AR ko(N) < M(N), 15 b < ko (V) BB
Z q(N) =0, T k> ko(N) BB qn(N) = 1. FiL

~Y par(N) < > i

k>1 k>k.(N)

R Ehr Zipf J& i B B4 th AR AL

BB scaling: B HOERENT  7EXIRAIBIZIRIT, BIEESRANFEDAOSR & > 1, (it
B —TERY— B D AL A T

qr(D) = Pr[Xy =0 = (1 —py)° ~ e PP

Bl : 24 Dpy, > 1 B} qi(D) =~ 0 (BRI PRk ) 5 24 Dp, < 11} qn(D) =1 (FiX
TAEFERBEL) . BE ¢u(D) K 1 2ER] 0 FIlG AR B2
1

XF Zipf 5475 pe < k7, EKENT k(D) < DYoo T e PP AE k(D) HEERIAFHBTER
BRAL, R BT AR, e

:Zpke_Dpk ~ Z Pe X Z pk < k. (D)"*7V = Db/

E>1 E>k, (D) k> (

P, % scaling WRARIRER H Zipf B, RN EIGIHIEd A BB tEay b, i
AE” AE D AR B AS WENZAR” BT s 45 B A R BT -

12



6 5 —Fh Scaling Law: JlIZx}n] /%)) Scaling

AR B S B B S A R SR 2 T L 4 AL BEVIZRR] 7 (8 R 71 FLOPs)
AR JRATEEN 51 3.1 Sy s ZEsh 2%, HAE Zipf 2000 N AR AMEATE AT

o 5
n
S
2
F 3
L = (Cmin/2.3 - 108)~0:050
foo 107 10° 10° 100 10
Compute
PF-days, non-embedding
H (2) 5 (4),
AL(T) ~ Zpk exp(—cTpy). (18)

k>1

YORAIN T SRR erp) ~ 1 g, Bl pp =~ (e)"V/P. Zipf 4MHE pe 5 k JERRE, Ml
AR

SEIR 6.1 (JIIkAE /B A scaling law). & pp = 2k, H¥F a>1. Z=((a), }H (4) BL.
mY4 r — oo,

AL(T) = p—(a=1/(ap) | (19)

SR, SRSB4

. . 3 1 /1\Y ) a—1
AL(T) ~ Ca,ﬁ T_(a_ )/(aﬁ)7 Ca”B = 7ﬁ <Z> C_(a_ )/(aB)F(T)
(0% (0%

IERR. B pr = 2k ARA (18), HETEESEEMR:

< q 1 B
AL(T)%/l Ea:_o‘exp —cT <Z> e

ic

WHEEIS exp(—ara=7). fEHIT

—ap at\ 1/(aB)
U = atx < r = (7> .
u
TR
do = — L (ar) /@)y =1/ @51 gy,
af

13



I H.

U
RABUME
S| 1
AL(T) = /u_m 7 (ar)~VByl/B e [—aﬂ((n)l/(o‘ﬂ)ul/(o‘ﬂ)l du]
1L gy /M ot yla=D/(@B)-1 g,
Z af 0

Br— oo ff, IR ar— o0, T (a—1)/(af) >0, FHUEE|

o0 1
/ o=t g1/ (@B) =1 gy, _ p(a )
0 045

Pt
AL(7) ~ % . alﬁ T aa—ﬁl) -
F a=c(1/2)" I EEBAGEE B P I H RIS S 188 (19). O

Remark 6.1 (5S¥EE AR, FHIZIRHARTHM N 5 batch size B [EE, WLt
R L FLOPsyep < NB (Fi% Transformer {UZ—PNSLHHEE), BB

Crun = FLOPsgep, -7 < 7.

Bt (19) F6r T

AL(Cryn) = Cr:lglafl)/(aﬂ).
& N B B M ZrekAs, MR PASERR Bt FLOPs B0 7 /EI3—4k; EiZA—4bF, #8847/
(a, B) BLAE

7 Rethink Compute Scaling Wi 55551k

HiSCAE Section 6 thDASER0% i (1) ~ exp(—crp}) T, T T AL(T) RHT . AT
WU — R PR EIE O P T R B A5 2 . D EE R AR ECk A Zipf KE
HRSH AN EICER; R ER R R T, HAA%H Mellin 28845 H .

FEER  FofAm BRI ISR - TR scaling IXIE Y, ATZ935 2R FEIZRTE] (SR
MRITFT)) RRE
AL(T) ~ K177, T — 00, (20)

Hr s > 0 SEEA SIS A X%, BATEEEN: A ARER RO S5 BEXE SR AR SRR
FEE R AE?

BERAM iR UL AR SUMBLR AT S T ik (20) FORTTABRER T, — LA AT RS A e st
o ARG (1,2, ), BUERS pe > 0 H DD pe =1, PARSRZEMRIE qi(7) € [0,1],
45

AL(T) =~ Zpk qr (7). (21)

k>1
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XA BTG sl PR, SRR ZE W] DAS A AR 1 A A
Fle MEIEAIER, (21) ZBrARE, BT R L AZRIE RECRAT WL oA X
Mg, R B BT AR R

KRBAUEBE Tk, (20) WRATEXAT R FRREASKBEARA KB, 1wk
MR A T SR Wr ) ERFS B — Bk IX Al 52, pr MAUR KR & H AR —HE
ARRIEMAEZE (Zipf J&HAHBI) -

1
po= S OLE), a1, (22)

Hor Ly () AWEALREL, Z A HEC (RTWCA Ly, 952 30)  fEJRZ R, TR IR EES
t, JAMILMRHE Zipf 2K L, = 1 R4

WSS R AR 52 () B 7 BRIV, WIHERDE » FEFEAE— S EX R X5
2B U E, Kope) B a(r) =0, XFRBFAWE (KE, Do) B a(r) =1, 3506
(g AL(T) FBEESRM) Sk ASEN . ATk (20) B3R s g, BRAPFAFTFEIE (1) 1
A HIELERE: fEgE £ W T, gn(r) HRERGE T — R4 R . &
55 HIEMW g RE A7 AE B> 0 SRIEFEH a > 0, PAREMZERE g [0,00) — [0,1], Hf5EES
PRt I NA

a(t) ~ glap}), (23)

I HXFU RIS HEDEE k) SO, MU AER ESREH b~ k(7). FOTHE—PHE
Il b~ ko (7) ERE O, RESOE,

o I OUbky Kopr): BT arpp > 1, FPA g() 20, XEFULFEATIH;

o BB (K ky Dope): BT arp] <1, BRA g() = 1, BTG ~ pr, B pe AEAUN,
T EARZ BN
o TPMEREIX: 4
ani ~1
I, g MG 1 PRI 0, X4 k A TTHRBEADE g [R5 0, tASE4R 1, i “IAiE
DI o KB XA 4 SRR AR .
T XISk k() e

anf* =1 (24)
WIf#. 7E Zipf I (b = 5k7°) F,
1/(B)
k(r) = (55) (25)

ZRPAIEE 7, R R R EOR A LSRR SR TR AR P B Bl X, AR R TR R
(9 775 WX gi(r) ~ glarpy) BITRUAER KSR ST, (AAEX Bt KA HOL, A4S
R AR PREE, RO IR SRR R AR I A Bz il . e, AEIERESR, $88
qr(7) = exp(—crp}) HARLER; BB q(r) EESHEH N RS BSHAILN (23). AT
PRIEIZ G SN B 2R SRZEBU N, FATHTEE 9(0) = 1. g(u) = 0, PAJ g HH (BT
RIS, ASERSHE SRR o Ry ) o
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EZEEWT, (21) &N
AL(T) =~ Zpk g(anf). (26)

k>1

LR compute scaling [ BRI EE AR — AN Ry 215 GO (T >R A 1) A

ot dREoh (o, 8) Yo, BIUBWIRE 1E Zipf 5 po = 2k~ T, HEZLEE ™k
Hifs pr B H g A5 /AR) 48 (26) Y

AL(T) =~ /100 %afa g(aT(l/Z)ﬁxfo‘B) dx.

4 A= a(1/2)°, fEHST u = Ara—o8 | T EHE1E 5]

1 1\ AT ~1
AL(T) = @(Z) a_ST_S/O u*g(u) du, 5= aa,@ . (27)
KB AR T (20) FHREOR AL s SEem KB o SHREIRE 8 tuE, 5 g A
PRIERTE S . TR ATATOAe [ M) [0, MR R K7

fEIERX H, f5S IR se 26 H AR B

/oous_lg(u)du € (0,00), (28)
0
W (27) A AR CEE — DA RIS, TR

AL(T) ~ alﬂ (%)1/'&@_8 {/000 u*g(u) du} 7% (29)

TS NIERY g TE4 s AR Mellin 284 My(s). 24 g(u) = e™ I, EiBN I(s), BIRISURE
RN R HEL

g Zib, A(20) BAIRREHE U, compute scaling law S 45 M TR o =3 H—,
RIEAERE ) ERA IEGNBCRAMA M# (21); K, BEFPIERZE ERAGKE (BN
A7z, Zipt HHFR) (22); K=, Sy e 390 0 LRSS (23), I HA0% g 19 Mellin
HEUE s = %5 WWAHRAERE (28). TEXAMT, 1850 i (o, B) ME—HiE, MR RAETERE
i Mellin Z845dE AHITA 1o SRR T N MR ARAR I B g —METIT5E M (s) BB, T
ARTAREI A

8 RN H Scaling Law HyZE—HLl: ATRhi ATt #mT e M

FE Sections 4 to 6 HFRAT/ S THIZUAUL B AL 5 ISR Ta] (7)) =S AR EL scaling
law; ¥£ Section 7 s CAEHEF LR T compute scaling RYSRFGEHZAF AL =FHG— 5[]
— KPS =2 scaling law fEAS T _1AR AT DAL KR U IR SRAERR 22 115 = 1 — Al (I
Ftrank) ke, MIMTETTABRE W REH R W50 FHSEE Zipf BRI A%
o =H MR T B BAERIT R AR : AR AUS SRR, T 5 A5 DI GRS 1z g
A GUVT B i BB A S T, (R B L e R RS T

MIERE R (2) H%,

AL(R) ~ Zpk a(R),

k>1
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H R FoRHE—FE (N, D &), 78 R 3.1 AP IMRET, a(R) Bk BRI, H HAEFE
XA 2k <k (R) B qu(R) R, 24 k> k(R) B g (R) %L 1. RIEXTEER € € (0,1),
S HBE AT AR A ey 2000 8 -

> o SALR) S D> e (30)
k>(1+e)k«(R) k>(1—¢e)k.(R)
MHE LB ST
ALR) < Y pi (31)
k>k.(R)

A (31) B =FHA & scaling law YILEIEZE: —HAH kL (R) WEES, MEENHZ, Zipt B
SRLIBTi
e Zipf % (% 2.1) pe= 2k~ (a>1) F, BHEERHLE (W 28 41)
> pe < K7, (32)

k>K

T =2 scaling law [ 22 597 4 b —FPOAN [E BIEA rank AR

BB (F 5 AT IREERINT)  7E Section 4 v, ZefiMpM R (R 4.1) 45t
ko(N) = M(N), (33)
A (31) 5 (32) 1%
AL(N) = M(N)~(=b,
Fitt— M(N) o< N7, ] AL(N) oc N~v(@=1),

BRI (BG5S EM)  AF Section 5 H1, missing mass XTI gr (D) = (1—pg)P ~ e PPx |
Had¥Em Dpe <1 duE, HILIEA rank ATHCY

1/a
Dppy =1 = k(D) < (2) . (34)

B (34) FLA (31) 5 (32) 15
AL(D) = k,(D)"(@) = p-(a=b/e

X5 GEM 5.1 S8 X HAY BT R HAZRREL e PP BT ERIET; HRARTRR
S RO AN AR AL

VNG /5507 (B 027 5 SIBRIT)  7E Section 6 i, SR MKMIEN 112245t qi(7) ~ exp(—cTp}),
P erpl < 1 P, AT

1/(aB)
cT ) (35)

c'rpf*(T) =1 == ko(m) < (ﬁ
FFEARA (31) 5 (32) 1§

AL(T) < k,(r)"@™ D) < p-(a=D/(aB)
B SERE 6.1, IFHAN Section 7 FFR, HBEHE T S8 0N L SR 0 (1) ~ g(arp]) H. Mellin
WECERAES, MREESUIH (o, 8) JuE, & g RIEARIH T f880 A2 TS M
Gamma bR —FhREB .
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Remark 8.1. \AYTHGE—AE, =LKHAE scaling law PYFEH ] 5 A
AL(R) = k,(R)~(e™V,

Ho Zipf BAREL o g “ AR ANATRE rank ZEW”, AR IRHLE B E IS rank 404
BESEIRIGC s PRI, S RN SR R SN R 45 B I A Y P A5 (B, i 2 20 I Bl
ek 2S5 5 — e TR R -

9 BRATEIR PR A H L MBS

HiI 3Co3 BIAE R — B PR RO E T A58 TR A, S iilged N, D, r [FAR, HILdE
HAMERZIE ALN, D, 7) ESHr, FBERIE RN ERmAER. &g —14
SERPESRE T AEARIRANNY scaling XTE]A, AL 5 =50 HAE FEr MATE AT max
(IR EEC S AW NS G R e i3

SE =A™ B B ST

en(N)= AN=°% ep(D)=BD™>, e (r)=Gr o, (36)
H A, B,G > 0 NHEE, an,ap,a; >0y scaling 54 1EA I Zipf IR P, ay = y(a—1).
op =9 a, = ol EPFEERRBULL L.
8 9.1 (loss ) Max £544). 7E scaling KR, ZAFE T
AL(N,D,7) Z en(N), AL(N,D,7) Z ep(D), AL(N,D,7) 2 e.(7), (37)
I HAFAE SRR A5 A& _E A T
AL(N,D,7) < ex(N)+ep(D) +e-(7), (38)

A R A

AL(N,D,7) =< max (ex(N), ep(D), e-(1)). (39)

IEHL. O (37) 152
AL(N,D,7) 2 max(ey,ep,&,).

HI, MMER 2,y,2 2 0, FEAAEKX
max(z,y,z) < rz+y+z < 3max(z,y,z). (40)
(2,9, 2) = (en.ep,er) FOAIEH (38), 15
AL(N,D,7) Senxy+ep+er <3max(ey,ep,e,),

PRI
AL(N,D,7) < max(ey,ep,&r).

HFREIFE (39). 0
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H1 (39), H[EE (N, D) HBE 7 SEINGRmE S, AL B EFTN e (7) S EEFEMI max(en(N),ep(D)).
PRt~ i 2 A P Bl AU ISR, 5 00 e SR A A«
e — Wz tTry (N, D), C# sty

Estat (N, D) := max (sN(N), ED(D)).

iy
AL(N,D,7) =< max (egat(N, D), £,(7)). (41)

E XYM A] 7. AP R s ey RUEE

( (N,D Gy
T7\Tx) = Esta ) — * =
er(72) = s (N, D) T <sstat(N,D))

TR < i AL(N,D,7) < e (1) x 7% 5 7> 7, if AL(N,D,7) < egat(N, D).

Test Loss

FIERT\

L= (Cmin/2.3 - 108)~0.050

2 T T T T
10— 10-7 10® 103 107! 10!

Compute
PF-days, non-embedding

10 Z5PU%p Scaling Law: Optimal compute point Scaling

AATHE G P B ) M AT ALY loss—compute TR R . FAT Rl e SIS
Wi, it E5ME T C KR

Test Loss
S

L = (Cmin/2.3 - 108)70:050

2 r r T T
10— 10°7 1075 10=* 107! 10!

Compute
PF-days, non-embedding

19



FE X 10.1 (Optimal compute point / ¥ ). 45 E —KINFHETTH (N, D), &XH optimal
compute point = £
8-,—(7'*> = €stat(N7D> (42)

B 7 = T (N, D)o I3 SOZ T M 135 2K 5 BE 5 550740 3 oA
AL.(N,D) := AL(N,D,7,),  C.(N,D):=&'Nr.(N,D),

Hr v > 0 ASEBHEL

HE XOA] ELER 7 TSR] C) A, METIEZ0ET, JA1esmh—EX, HAEreEk
T E R A B
&8 10.1 (Optimal compute point BFIERFKIE). 7F (36) HRAHAMRIX T, Bl
en(N)=AN—N ep(D)=BD %", e.(1)=Gr ", A, B,G>0, ay,ap,a, >0,

W € 10.1 Y 7, AL, Oy H 2

& 1/ar & 1/cr
(N, D) = (5Stat(N,D)) N (max(AN*O‘N,BD*"‘D)) ’ (43)
AL,(N,D) = ega(N,D) = max(AN~*¥, BD~P), (44)
G 1/ar
Cy(N,D) = N(maX(AN_anBD_QD)) . (45)
R, TR SR T KN

Niten/ar = AN-ev > BD=°D,
C.(N,D) = (46)

N Dev/ar  BD=op > AN-oN,

WL (12) 5 e, (r) = Gror, MRS

Groe N, D) G\
T= sta’ b @ * - T AT 1\ b)
T Estat 7 <5stat(N, D))

B (43). ARIE] (41) 15
AL,(N, D) < eyat(N, D),

B (44). i Cp = &' N7 73 (45). 5, M5 max(AN—Y, BD™*P) fypifh £, 2 5ILHE
52 (46). O

HNTHE (N, D) HEHRE AL, X T O, WMPARRRM, HEHEdafr. — P HEANTE
TSP, A EERAEA s T8 5 AR 3550 S0k a8k .
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fRix 10.1 (FSMBUIERR). 58— EilgiatT (N, D)} We

AN—N = BD=°p, (47)

EI 10.1 (Optimal compute point B loss—compute Ff£). 7£ % 10.1 T, optimal compute
point ({4525 5 FE 5587 2

AL,(C) o« C anar. (48)
SEAHL, FAAEREL 1, c0 > 0 EFEXTIZIE EIrE B TR

apnor anor

aC, N7 < AL,(N,D) < ¢, C, °N7°7.

iER. (i 101, FRERIEUR 2

Etar (N, D) < AN~V

1/,
T*(N,D) = (%) ]\fouv/ozr7 C'*(N,D) = N7, = Nitan/ar
(7] Fh
AL*(Nv D) = 8Stat(N7D) = AN_aN-

W& N: H G, = Nitov/or 45

ar

1
N = C*lJraN/a'r — C*OLN+0¢T .

A AL, < N= 4 . »
antar — C* D‘N+a77

N-

AL, =< C:a
Bl (48),

Remark 10.1 (5 Kaplan [1] B compute-efficient BjiF—21%). Kaplan [1] Z7E TR EIEIR R T
AR M 2 e e
L(N,S) = (W) + (g) : (49)

HHEMFLHR C o< NS THyME LN, S), HaE a2

CIRNES

Lopt(C) o C~anvos, (50)

B 101 AN ZR T FEEOR A0 Kaplan [1] B2 or = as, I8 Co = #'N7o ML
fE C o< NS {yla]—FENeL, W (48) 5 (50) ZW—5, Mok, [1] L% & critical batch #Z1E
A L(C) o« C72¢, Hit ag' = oy’ + a5’ + ap's BEEMRTAER HE b B
batch X SR ARSI
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11 Compute-Optimal: PR L34 F 0¥ 5k
ATTHE DU

AL(N,D,7) = max(en(N), ep(D), &£(r)),  en(N) = AN, ep(D) = BD™*", &,(r) = G~
(51)
T, #HESLEF B C WY compute-optimal By, SR HMAEMIERL: (1) R
FLPRTY, max B4 FARE R VUAR I BIAETS BRIUA AL s (i) — I Bl ke Ay B A R e 53— T B
TR, max fR/IME A R4 .
245 b, Kaplan % [1] 5§ Hoffmann % (Chinchilla) [2] £ TRRM RN BLRH. T34
g —fRE: X (51) FEA I FIATIRER T A 2

11.1 1B A WEoksik1e (C < ND)
FeHIEINZRIFE] RS, SR SO S S 15 -
e-(1) < max(en(N), ep(D)). (52)

iy
AL(N,D) = max(AN~®~, BD™°?). (53)

XIHH% Transformer [¥)& H R A
C = kND, (54)

Hrr k> 0 L HELL

il 11.1 (SR £ SRBERSE [2]). 7 (63) STMRELAR C =xND T, Anmitih

min maX(AN*O‘N, BD*O“D) st. ND = g
N,D K
P — IR AT I A2 2 A A
AN™*N =< BD™ %P, (55)

FFHAAES C TLRIHLES

Nopt (C) Canton Doyt (C) Cantop ALy (C) C~antep. (56)

i, {E4R ND = C/r F5

fOA (53) PG 2

S(N) = max(AN_o‘N, B(%N‘l)_%) _ max(AN_aN, BmaDC'_O‘DN“D).

SF—TRE N ERE N, S5 I N B BT, I o(N) BIBRIMELEPTIE B AL S, B AN Ty <
BrerC~*p Nop - ZEf)TF (55),
HIFIR 25 E T N B C-H84 BEPAG

NoNtap cor, — Nopt(c)  Cep/(antap)
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il D = C/(kN) 13 Dopi(C) oc Con/lentean) g e i AL W I R By, PRt

ALopt(C) = ANOpt(C)_aN x C_O‘NQD/(&N-HXD).

11.2 $B B: Ik LS (C =< N7)
PH BRI RS K, (BT (e, er) IITTIE:

ep(D) £ max(en(N), e,(7)). (57)
iy
AL(N,7) =< max(AN~*¥, Gr—°7). (58)
SR VY
C =k'Nr, (59)

Hrp v > 0 ASEBHEL

Wl 11.2 (BEMIUR £ SEMRMSE [1]). 1 (58) EHBLAW C = «'N7 F, ZREMb
min max(AN_O‘N, GT_O‘T) s.t. Nt = g/
N,t K
AT — IR AT I 2 22 A 4
AN=v =< Gror, (60)
HHGES C TRMHEEES
Nopt(C) o Cntar | 7,(C) o« Canter,  ALgyw(C) oc C andar.  (61)

WU FEH NT = O/ B

A (58) 15
(N = maX(AN’”‘N, G(%N*l)%) - max(AN’O‘N, GH’O‘TC”Q*NQT).
[FIFEH, 55—WikE N SRR, SBWRE N ORRIE T, DR R O S [ A B -
AN=ON < Gr/or 0= Nor,
ZMT (60), PG
Newtor < Cor = N, (C) x O/ tenarn),
il 7= C/(K'N) 15 Topt (C) oc Con/lantar) - Bt di g h # s AT —IG BRITA Y, AT

ALgpt(C) =< ANt (C) 7N oc O ovar/lantar),
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11.3 {RA Zipf-H ARSI B St
FEA SCHEZUAR 2 A 4L

ax=r(0-1), ap=""1, afzaa‘ﬁl (62)
KA (56) 5 (61), BIifg3lm i men) U, Feplth, fEHE A (I C < ND) T,
Nopt(C) o CT55,  Doe(C) o CT5%7,  ALgp(C) o €~ tiar (63)
MAERE B (5 C < N7) F,
Nopt(C) x CToo77,  1(C) x CTeF7,  ALgy(C) x O, (64)
12 45k
AR SCOAEA IR
AL~ pea (65)

k>1
R, TE Zipf GEitlak (1 2.1) 8, SIAERGINS (B3 3.1) SR S8k sl
Jyzf (513 3.1), FEAME NTK St BAZ R REe ~, TS P05 L scaling law.
PR IEF S . A RPHEAERR S M-I Ak b, T AL B 3B Zipf EESHEIUE .
=R RO 5N
en(N) = ANV, ep(D) =BD™ P, e (1) =Gr (66)

HASER R BIRGIT SR o EMAHE v HEh 1544650 8 S

a—1 a—1

an =y(a—1), ap = ———, a, = o (67)
X RV R A S (2N LB L) A

(i) Model scaling: AL(N) =< M(N)~(@=1) ~ N—v(e=D (68)
(ii) Data scaling: AL(D) = D~(e=b/a (69)
(iii) Time/compute scaling: AL(7) =< 7~ (@=/(@h) (70)
(iv) Optimal point: AL, (C) O~ anvar (FEERSH i ). (71)

TEBC A PR BRAY scaling IX[R],  SUA R 205 2% th =IO A £ & e (A 9.1):
AL(N,D,7) =< max (ex(N), ep(D), e-(1)). (72)

ATRNEBU 0% T, compute-optimal M3 AL BORBURNY M T7E R4 WL BRI 4 B4
(BHEC =< ND, er WEF): Nopi(C) x C58555, Dopy(C) x o355, ALy (C) o C#n s,

anar

(FSEC < N7, ep IWER): Nopi(C) C"NQI‘**, Topt (C) C"I\C'xivam ALy (C) < C™antor,
(73)
WG, FRESRE TR R B K R . A R A B AR EAREL (AN, Gp, &r ), W
GHEZREORAFAE (o, B, ) 15
a—1 R 1.

Gp = o Qr = BO[Dy ay = ’Y(Oé - 1)7 (74>
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Frik—2BK compute-optimal Fi#THEEH 2
Gnép

an + ap

anGr

(WSHC < ND) B Gope = (MHC < N7). (75)

Gopt = —
ay + a,

P, MO R ATE R, g R R SRRl S R R TR A A SR 2R

%75 3CHk
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